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The classical N-body problem within a generalized statistical 
mechanics 
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Abstract The modifications that must be i n d u c e d  within the framework of standard, classical 
N-body statistical mechanics techniques, in order to deal with the recently proposed generalized 
scenario of non-extensive statistical mechanics are discussed A generalized version of the 
equipartifion theorem is shown to hold. The ideal gas is revisited as a simple application. 

Non-extensivity (or non-additivity) is a term much in vogue nowadays in some areas of 
physics, by way of reference to some interesting generalizations of traditional concepts. 
These generalizations exhibit a somewhat holistic (context dependent) nature and flow 
mainly along two separate streams: generalized statistical mechanics, on one hand [I- 
191, and quantum groups [20-331 on the other. A tentative connection between these two 
fields has recently been advanced 1341. 

The extension of statistical mechanics we me referring to here was proposed in [I], 
inspired by multifractals, on the basis of a generalized entropy S,, that possesses the 
usual properties of positivity, equiprobability, concavity and imeversibiiity, and suitably 
generalizes the standard additivity (it is non-extensive if q f 1) as well as the Shannon 
theorem [3]. It reads 

where k is a conventional positive constant, q is any real number (characterizing a particular 
statistics) and the sum runs over all the microscopic configurations (whose probabilities are 
{pm) ) .  By introducing the generalized internal energy 

Curado and Tsallis show [3] that the entire (Legendre-transform) mechanical structure of 
thermodynamics is preserved. By recourse to information theory (IT) concepts [35] it 
has been shown that the corresponding generalization for non-diagonal quantum density 
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operators is easily achieved [7]. The conventional theory (Boltzmann-Gibbs statistics) is 
that particular instance in which one chooses q = 1. 

Most concomitant applications refer to quantal instances 11-19], while relatively 
scarce attention has been paid to classical ones. The classical N-body gravitational 
problem constitutes one of the possible interesting applications of the generalized statistical 
mechanics [6] .  (Levy flights [8] and self-organization in biological systems [9] constitute 
other interesting applications, recently established.) As is well known [36,37], the 
canonical ensemble for such a problem poses (thus far) insurmountable difficulties within 
the conventional Boltzmann-Gibbs scenario. 

A D-dimensional N-body gravitational-like system consist of N classical particles 
attractively interacting through two-body interactions characterized by a potential U ( r )  = 
A / r U  ( A  < 0 if a > 0, and A > 0 if ci < 0). The one body internal energy is characterized, 
within Boltzmann-Gibbs statistics, by the integral 

A R Plastin0 et a1 

(the cut-off, which avoids possible r = 0 divergences, is physically very natural due to 
unavoidable quantum effects). We straightforwardly verify that, for any finite temperature, 
Z(D,  a) diverges if 0 < a < D and converges if (Y < 0 or if (Y > D (a = 0 and a = D are 
marginal cases to be discussed on their own). Newtonian gravitation (a = D - 2) belongs 
to the forbidden region for D = 3 (this fact is, of course, well known [36]). In other 
words, the BoltzmnnCibbs statistical description of canonical t h e m 1  equilibrium fails 
a E (0, D ) .  Consequently, something has to be done! Naturally, our present suggestion 
is to replace standard thermo-statistics by the generalized one, where q is a function of 
(D. a) to be determined (of course, one expects to recover q = 1 if (Y 6 (0, D ) ) .  This task 
should probably be accomplished by carefully discussing the dynamics of the system. For 
collisionless systems, the standard formalism [3S] yields maximum entropy (phase space) 
distributions that imply a non-physical infinite mass for the associated system [6 ,38] .  It 
has been shown in [6] that for q sufficiently different from 1 this divergence disappears. 
In order to treat more general situations than the collisionless one it would be of interest 
to discuss some particular aspects of the generalized statistical mechanics in connection 
with the classical many-body problem, as some difficulties arise in connection with the 
concomitant partition function. These seem so acute that not even the classical ideal gas 
has yet been adequately discussed within this generalized scenario [39]. The discussion of 
the ideal gas (essentially corresponding to a = D = 0, constituting therefore a marginal 
example with respect to the considerations expounded in the preceding paragraph) can 
further provide useful insight concerning these matters. Additionally, the study we shall 
here undertake could be of some utility in connection with stellar systems with polytropic 
phase distributions, which have been shown to be of the generalized maximum entropy form 
[61. 

In the Bolmann-Gibbs statistics the exponential form of the canonical ensemble 
probability distribution [40] allows for the explicit integration, in evaluating the partition 
function Z, of the momentum-dependent part (kinetic energy) of exp(-pH) (,3 is the inverse 
temperature and H refers to the Hamiltonian of the system). This fact, reduces the work 
involved in computing Z to the evaluation of integrals over just the configuration variables 
r:,  i = 1, , . . , D N ,  where N refers to the number of particles and D is the dimension of the 
one-body configuration space. The corresponding multiple integral is conventionally called 
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the configurational partition function. For 

we have 

Of course, this nice property is lost for q # 1, as, instead of (5) we have to deal with 
[1,31 

which does not lend itself to an obvious factorization process. 

will, as a bonus, yield the general treatment of the classical ideal gas. 
In the present paper we wish to address that this problem in an adequate fashion, which 

We set 

R =  (rl. .  , . , rDN) P = (P I , .  . . , PDN) (7) 

and write the generalized (canonical) phase space distribution function 11-19] 

f ( R ,  P )  = Z;I[l - B(1 - q ) H ( R ,  P)]l l( l-*) (8) 

where, as usual, we include in (6) division by the factor q = N!hDN so as to have a 
dimensionless partition function and probably account for the fact of having to deal with 
N undistinguishable particles (h is the size of a typical 'cell' in phase space). It must be 
stressed that, by definition [ l ,  31, the distribution function (8) vanishes, for q < 1, whenever 
the bracket in this equation is < 0 (cut-off condition of generalized probability dis~bution). 
A similar condition exists for q 

Going over now to 'polar' coordinates in our DN-dimensional momentum space we set 
1 [9]. 

(P I , .  . . , PDN) + ( p ,  $1 , .  . . ~ ( D N - I ) )  (9) 

(P is the radial coordinate and $ 1 ,  . . . ,$DN-I  are the angular ones). The integrand in (6) 
depends only upon P. The integral over the angular variables $ j  is immediately performed 
[41] and contributes a factor 6 = 2zDN/'/F(DN/2) to the generalized partition function 

We shall herefrom conceutrate our efforts on the interesting physical range [38] of q- 
values for the present problem, namely, the region q < 1, assuming, of course, fi  > 0 
(we recall that the energy spectrum is unbounded from above, hence B c 0 is physically 
inaccessible). Towards the end of this paper we shall discuss other q-values. With the 
transformation (9) we can recast Z,, after introducing the definition 

Z,.  

W(R) = 2" - N [ 1  - B(1 - q)U(R)I (10) 
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in the fashion 
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Z, = q-lS[p(l - q)/Zm]' / ( ' -*)  [ W ( R )  - P2}l/('-*)PDN-' dPdDNr.  (11) J 
The cut-off condition enters here (cf the discussion following equation (8)). which 

entails that the factor ( W ( R )  - P z )  should be set equal to zero whenever it  becomes 
negative [ 1,3]. As a consequence, configurations R for which W(R)  < 0 do not contribute 
in the integral (11). Moreover, in order io enforce the cut-off condition we can accept as 
valid 'P-contributions' to (1 1) those that obey the restriction 

0 < PZ < W ( R )  (12) 

which tells us that the P-integral limits are zero and the square-root of N(R). Additionally, 
we are entitled to change variables according to 

[ P z / W ( R ) I  = coszO 0 < 0 < 1rI2 (13) 

so as to replace the P-integration process by a 0 one, recasting 2, in the fashion 

z, = q-lS[p(l - q)/2ml'/"-*)r P C  I (14) 

with 

and 

(16) 

The angular integral can be expressed in terms of beta functions (Euler's integrals of 
the first kind) which in turn can be rewritten with the help of gamma functions [41] so that, 
finally, we have 

zC = W(R)(~/(~-Y)+DN/~) dDNr, 

r, = p ( ~ ~ / z ) r ( ( 2  - -q))/r((z - MI - 9) + ~ ~ 1 2 )  

= $ r ( ~ ~ / 2 ) [ r , / r ~ ] .  (17) 

In writing down (14), together with the closed result (17), we have achieved our main 
aim, i.e. that of reducing the evaluation of 2, to the computation of just one integral over 
the configuration variables (cf equation (16)). We shall now apply this result to the classical 
ideal gas. 

For the ideal gas the potential energy U(R) vanishes, so that the associated quantity 
W ( R )  (cf equation (IO)) verifies 

W ( R )  = 2m/[p(1 - q)] = constant (18) 

and, as a consequence (cf equation (16)), 

1, = ( h / p ( 1  - q)}[W-dtDN/21~N 
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where V is the D-dimensional volume accessible to our gas. Consequently, equation (14) 
becomes 

z,, = (VN/N!)[2xm/h2(1 - q ) p ~ ~ ~ I ~ ( r , / r ~ )  (20) 

which, by introduction of the two quantities 

can be recast in the fashion 

Zy = Ad(q)VN(kT)DN/Z  (23) 

where we have used p = l / k T .  
The generalized Helmholtz' free energy is [3] 

so that we find 

and the specific heat is 

Cy = T [ % I N , ,  = [s] = - T [ a 2 ~ q / a ~ 2 ] N , ,  
N.V 

This result holds for q < 1 and has been here derived for the first time. By recourse to the 
Hilhorst's transform, one of us [38] has discussed the ideal gas in the q-range 

1 < q < 1 + (2JDN). (27) 

Unfortunately, Hilhorst's transform cannot be employed for q < 1 [39]. It is to be 
remarked that the treatment discussed in this paper can also be applied in the case of q- 
values belonging to the interval (27). Extra care must be taken in accommodating the 
(analogous to the q < 1 case) cut-off condition, but no essential differences arise with 
respect to what we have so far expanded. We obtain, via a quite different procedure, the 
same results obtained in [38]. 

Equation (26) exhibits the loss of universality that the present generalized statistics 
introduces. Indeed, if (q - 1) # 0, the specific heat depends on m (analogously to what 
happens in the q = 1 quantum statistics). Also, for the q < 1 case, we verify that, in the 
N + w limit, an interesting crossover occurs in the prefactor of the specific heat. Indeed, 
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i t  increases as N i f  q = 1 and as NZ if q < 1. This is to be mentioned in connection with 
a similar behaviour discussed by Saslaw [36] for D = 3 gravitation. 

It is instructive to rederive equation (29) with reference to a generalized version of 
the equipartition theorem, that, as we now proceed to show, also holds wifhin the present 
generalized framework. 

Let A(R, P )  denote a generic quantity. Its generalized mean value is given by (cf 
equation (2)) [3] 

A R Plastino et al 

and we shall use this to derive a generalized equipartition theorem. 
Let us now assume that our Hamiltonian H can be split into two pieces in the fashion 

H = h + g  (29) 

where g is a homogeneous quadratic function of L canonical variables of which say U are 
generalized coordinates and the remaining ones are /I = L - v generalized momenta 

g = S ( ~ I , .  . . .ry. P I . .  . . I P,,) (30) 

and h does not depend upon these L variables. By Euler's theorem [41] we have 

so that the generalized mean value of g reads 

We shall now discuss in some detail one generic term of this equation. Consider 

(rt(ag/ard),  = N!hDN *;" / rk(ag/ark)[l - p ( 1 -  q)H]y/(L-q)dO. (33) 

This is a multidimensional (2DN) integral. Let us evaluate the integral over r k ,  This 
variable ranges between, say, r, and rh, these values being given by the cut-off condition 
mentioned in connection with the probability distribution (8). We have 

so that 
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In order to obtain J we integrate by parts. To do so we first notice that, on account of 
equations (29) and (30) 

a 
ark 
-([I -B(1 -q)H]'"'-y'] = -fi(ag/ar,)[l -p(1 -q)H]4"1-" (36) 

which, since the integrated part wilI vanish because of the cut-off condition, leads to 

J =B-' [ I  -B(I - q ) H ] l / ( l - q ) d r & .  (37) s 
Using the normalization condition for f ( R ,  P ) .  namely 

It is apparent that each term in the sums appearing in (32) will yield a contribution of 

(g), = ( L / Z ) ~ T ( Z , ) ] - ~  (40) 

which is the generalized version of the equipartition theorem. For the ideal gas discussed 
above, the total energy E is a homogeneous quadratic function of DN momenta, which 
allows one to write 

the type (39), so that 

( E ) ,  = iDNkT(Z , ) ' -4  (41) 

which, after differentiation with respect to the temperature, leads once more to the specific 
heat (26). 

Now, in order to ascertain the thermal behaviour as q moves away from 1 (at fixed 
values of N .  V .  p )  we present the first-order expansion of the equation of state in terms of 
(1 - 4). namely, 

P V / N k T  2 1 + (1 - q ) [ ( D N / 2 )  In(2irmV2'D/h2p) - ln (N!) ] ,  (42) 

It is seen that the pressure (P = -(aF,/aV)r) tends to change as N Z  (non-extensivity!) 
with large N, which reminds one of the gravitational gas behaviour in two dimensions 136). 

We conclude by restating that our present methodology allows for a straightforward 
application of statistical mechanics techniques to classical systems within the generalized 
scenario [I] under consideration. It can be also mentioned that the existence of a generalized 
equipartition theorem is another manifestation of the coherence of the generalized mean 
values [ I ,  31, which were earlier shown, within a quantum framework, to obey the constraints 
posed by Ehrenfest's theorem [7]. The appearance of the N-body partition function in (40) is 
a clear manifestation of the holistic character (i.e. context dependent even in the absence of 
interactions at the Hamiltonian level) of the present generalization of statistical mechanics. 
As evidenced by equation (41), a particular degree of freedom, although contributing with 
the same amount to the total energy, is coupled to all the remaining degrees of freedom 
through Z,, which carries with it information concerning the structure of the whole system. 
This is a patent manifestation of lhe non-extensive entropy we have used herein. 
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